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2016: Motivation
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▪ Workshops and frameworks abound, but no consensus on the end goal:

– Did this commit make things better or worse?

– How do different approaches compare?

– What does it mean if PP appears in an RFP?

▪ We decided to take an application-centric view:

1. Is it performance portable?

2. What performance does it achieve “on average” (over platforms/inputs)?

3. How similar is the performance efficiency achieved on different platforms?

4. What performance can I expect if I introduce a new platform?

5. How difficult is it to write/maintain?
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2017: Definition and Metric
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Progress

▪ Yes/No answer for “is it PP?”

▪ Captures “average” performance in 𝐻

▪ Architectural and Application Efficiency

Challenges & Future Work

▪ Doesn’t account for productivity

▪ Loses information about distribution

▪ Computing efficiency can be difficult

“A measurement of an application’s performance efficiency
for a given problem that can be executed correctly on all 
platforms in a given set.”
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S. J. Pennycook, J. D. Sewall and V. W. Lee, “A Metric for Performance Portability”, PMBS 2017
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2018: Architectural Efficiency from Roofline Model
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Progress

▪ Automatic computation of efficiency with 
higher accuracy than simple throughput

▪ Demonstrated importance of choosing 
correct ceiling when computing efficiency

Challenges & Future Work

▪ Refining roofline eventually guarantees 
100% architectural efficiency!

C. Yang et al., “An Empirical Roofline Methodology for Quantitatively Assessing Performance Portability”, P3HPC 2018
T. Zhao et al., “Delivering Performance-Portable Stencil Computations on CPUs and GPUs Using Bricks”, P3HPC 2018

Plug in Roofline model in place of 
architectural efficiency:

𝑒𝑖 𝑎,𝑝 =
𝑃𝑖 𝑎, 𝑝

min(𝐹𝑖 , 𝐵𝑖 × 𝐼𝑖(𝑎, 𝑝))

May need to select a different bound
for different platforms.
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2018: A Beginner’s Guide
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Progress

▪ Identified that PP can be skewed by using 
many similar platforms

▪ Highlighted tension in optimizing for PP

Challenges & Future Work

▪ Proposed idea of a heterogeneity metric 
as a confidence score

▪ Proposed categorization of optimizations 
and a database of best-known versions

H. Dreuning, R. Heirman, A. L. Varbanescu, “A Beginner's Guide to Estimating and Improving Performance Portability”, ISC Workshops 2018
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2018: PP MD
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Progress

▪ Penalizes codes that would require 
significant effort to port

Challenges & Future Work

▪ Requires manual identification of 
application components

▪ Metric does not support multiple 
platforms without additional averaging

A. Sedova et al., “High-Performance Molecular Dynamics Simulation for Biological and Materials Sciences: Challenges of Performance Portability”, P3HPC 2019

where:
• 𝐺 captures components significantly improving performance
• 𝑄 captures non-portable components
• 𝑆 is speed-up.
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2018: Productivity Logs & Code Divergence
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Progress

▪ git-hooks for tracking LOC changes and 
performance portability of each commit

▪ Partial productivity metrics

Challenges & Future Work

▪ Difficult to compute divergence

▪ Assumes each platform is a distinct 
code base (or git branch)

S.L Harrell, J. Kitson et al., “Effective Performance Portability”, P3HPC 2018

𝐻

2

−1

෍

𝑖,𝑗 ∈𝐻×𝐻

𝑑 𝑐𝑖 , 𝑐𝑗

where:
- 𝐻 = set of platforms
- 𝑐𝑖 = code required to compile and 
execute correctly on platform 𝑖.

https://github.com/lanl/SHELTIE/

https://github.com/lanl/SHELTIE/
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2019: Code Base Investigator
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Progress

▪ Divergence no longer tied to git commit

▪ Intuitive visualization of code similarity 
between platforms

Challenges & Future Work

▪ Only captures static specialization

▪ Doesn’t support C++ templates

S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, “Code Base Investigator”, P3HPC Forum 2019
I. Z. Reguly, “Performance Portability of Multi-Material Kernels”, P3HPC 2019

𝑐𝑖 , 𝑐𝑗 =
𝑐𝑖 ∪ 𝑐𝑗 − 𝑐𝑖 ∩ 𝑐𝑗

𝑐𝑖 ∪ 𝑐𝑗

“The ratio of platform-
specific code to code used 
by both platforms.”

Compute code divergence using Jaccard distance 
between different implementations.

https://github.com/intel/code-base-investigator

https://github.com/intel/code-base-investigator
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2019: PP Divergence
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Progress

▪ Summarizes performance over platforms 
and input problems

▪ Represents average distance from the 
best-known implementation

Challenges & Future Work

▪ Score can be >100% if performance is 
reported as time; differs from throughput

▪ Needs to be evaluated for more platforms

D. Daniel et al., “On Applying Performance Portability Metrics”, P3HPC 2019

𝛿 𝑎, 𝛼 =
𝑓𝑖 𝑎, 𝑝, 𝑠 − 𝑓𝑖(𝛼, 𝑝, 𝑠)

𝑓𝑖(𝛼, 𝑝, 𝑠)

Δ𝑅𝑀𝑆 =
σ𝑠∈𝑆 𝛿 𝑎, 𝛼 2

𝑆

𝑃𝐷 =
σ𝑖∈𝐻 Δ𝑅𝑀𝑆

𝐻
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2019: Bristol Case Studies
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Progress

▪ Comparison of languages backed by 
enough data to be interesting

▪ Interesting visualization for comparing 
impact of platform selection on PP

Challenges & Future Work

▪ Order of platforms on x-axis of graph is 
application-specific

▪ Lots of data to explore and interpret!

T. Deakin et al, “Performance Portability Across Diverse Computer Architectures”, P3HPC 2019
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2020: Argonne OpenCL Case Study
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Progress

▪ Augments PP with standard deviation 
to capture spread of results

Challenges & Future Work

▪ Standard deviation is typically defined 
relative to arithmetic mean

▪ Unclear what it “means” to calculate 
standard deviation from PP

C. Bertoni et al, “Performance Portability Evaluation of OpenCL Benchmarks Across Intel and NVIDIA Platforms”, IPDPSW 2020
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Lessons Learned
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1. We need different tools for different analyses

2. Growing consensus around P3 terminology

3. The community is interested in two different kinds of productivity:

– Effort required to develop (performance) portable codes today

– Effort required to move codes to new machines

4. How much specialization is okay is subjective



© 2020 Intel Corporation

Impact: OpenMP* Variants

▪ Maximizing PP requires good 
performance everywhere

– Specialization is unavoidable

▪ Minimizing CD requires specialization 
to be simple to express:

– Should avoid boilerplate dispatch

– Shouldn’t “pollute” remaining code

__m128i _mm_add(__m128i a,
__m128i b)

{ /* Specialized code using SSE */ }

__m256i _mm256_add(__m256i a,
__m256i b)

{ /* Specialized code using AVX2 /* }

#pragma omp declare variant(_mm_add) \
match(construct={simd}, arch={sse})
#pragma omp declare variant(_mm256_add) \
match(construct={simd}, arch={avx2})
int add(int a, int b);

13
S. J. Pennycook, J. D. Sewall, A. Duran, “Supporting Function Variants in OpenMP”, IWOMP 2018
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Impact: oneAPI and DPC++

▪ Intel is tracking DPC++ compiler 
development using PP and CD

▪ Encourages questions like:

– Is this feature supported across 
different platforms?

– Do these concepts have the same 
interpretation across platforms?

– Do we need to provide a library for this 
functionality to minimize divergence?

14

Results shown are for illustrative purposes only, and do not reflect the current or targeted state of the DPC++ compiler.
See our other talk at P3HPC Forum 2020 for more details on combined usage of PP and CD.

“Data Parallel C++ (DPC++) ... enables high productivity and 
performance across CPU, GPU, and FPGA architectures, while permitting 
accelerator-specific tuning.” - http://software.intel.com/oneapi

Benchmarks should 
ideally be as close to 
here as possible.

http://software.intel.com/oneapi
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Next Steps
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▪ We’re not there yet†:

1. Is it performance portable?

2. What performance does it achieve “on average” (over platforms/inputs)?

3. How similar is the performance achieved on different platforms?

4. What performance can I expect if I introduce a new platform?

5. How difficult is it to write/maintain?

▪ Need more feedback and evaluations of proposed metric and tools

▪ Lots of interesting avenues for future research and tool development

† Many papers addressing 1 and 2, some papers addressing 3 and 5, only one or two papers addressing 4
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